
 Large scale plane wave pseudopotential density

functional calculations on GPU clusters

Long Wang1, Weile Jia1, Xuebin Chi1, Weiguo Gao2, Lin-Wang Wang3

(1) Supercomputing Center, Chinese Academy of Science

(2) Fudan University

(3) Material Science Division

Lawrence Berkeley National Laboratory

National Basic Research Program of China

NSF of China

Science & Technology Commission of Shanghai

Office of Science, BES, DOE, USA

A profile for material science simulation

DFT

What is the remaining challenge for DFT calculations?

P. Kent, ORNL

M. Neurock, U. Virginia

Nanocatalysis: Pt 100 to 1000 atoms

 Ab initio MD for a few ns

 massive configuration space

 search for structures

State-of-the-art: 1-2 min per MD step

(so can only calculate a few ps,

But want: ns!)

For >>1000 atoms, linear scaling method

Sweet spot: a few hundreds to a few thousand atoms

 need faster speed

FePt 807 atom,

VASP

P. Kent, ORNL

Plane Wave Pseudopotential DFT codes

 They are the most widely used, and most mature codes

 There are about a dozen of them:

 VASP, CASTEP, CPMD, ABINIT, PWSCF, DACAPO, SOCORRO, DFT++,

 PARATEC, DOD-PW, CP2K, SPHINX, QBOX, PEtot

 But the CPU codes often do

 not scale (e.g., 1000 atom

 system might scale to

 a few thousand cores)

 A few minutes per MD step

Idea: use GPU to speed up

 the absolute speed

)()()](
2

1
[2 rrrV iiitot

 If the size of the system is N:

 N coefficients to describe one wavefunction

 i = 1,…, M wavefunctions , M is proportional to N.

 Orthogonalization: , M2 wave function pairs, each with N

 coefficients: N*M2, i.e N3 scaling.

rdrr ji

3*)()(

The repeated calculation of these orthogonal wave
functions make the computation expensive, O(N3).

i(r)

i(r)

The computational cost of DFT method

PEtot code

 Developed in Lawrence Berkeley National Lab

 Free: https//hpcrd.lbl.gov/~linwang/PEtot/PEtot.html

 Has three levels of parallelization: G-space, state index, k-point

 Uses norm conserving pseudopotential and ultra-soft psd.

 Use parallel FFT (by Andrew Canning)

 Can calculate 10,000 states on a few thousand processors

The flow chart of the DFT method (PEtot code)

The overall flow chart of

SCF iterations

The conjugate-gradient (CG)

to solve the Schrodinger’s eq

(98% of the total time)

FFT (by A. Canning)

Real sace

Nonlocal pseudopotential

The kernels in the H*ψ (Hpsi)

ilR

lR

lR ,

,

,

lR,

………

P00

P10

P20

P30

P01

P11

P21

P31

P02

P12

P22

P32

P03

P13

P23

P33

ψ1 ψ2 ψ3 ψ4

G1

G2

G3

G4

P00

P10

P20

P30

P01

P11

P21

P31

P02

P12

P22

P32

P03

P13

P23

P33

ψ1 ψ2 ψ3 ψ4

G1

G2

G3

G4

k1 kn

Parallelization scheme for a CPU code

))(exp()()(,, rkGiGCr
G

kiki

G1,G2,G3 (G-space) Real space

Parallel

FFT

(each CPU

has many

1D FFTs)

GPU hybrid parallelization

P0

.

.

P14

P15

G0

G14

G15

{ψi}

P0 P14 P15

ψ0 ψ14 ψ15

{G}

Hpsi

FFT

nonlocal

ji

Diag

rotation

MPI_alltoall

Wave function

transpose

CUBLAS

MPI_allreduce

CUFFT

 The FFT is within a single GPU

 (no parallel FFT)

 memory limitation to the size:

 a few thousand atoms

G-parallel Index parallel

A single node in the CPU/GPU machine (IPE)

CPU : Xeon 5520 quad-core CPU

 9 Gflops/core (2.2 GHz)

 6 GB memory/core

GPU: Nvidia Fermi C2050 GPU card

 448 stream processors/card

 515 Gflops/card (double precision)

 3 GB memory/card

 Multiple GPU cards in one node

(Institute of Processing Engineering, CAS)

Strategy: one CPU core controls one GPU card, CPU/GPU unit

Another example of multiple GPU per node machine

 NEWTON, offered by Electronics Nexus

 8 CPU cores (Intel)

 8 GPU cards (Nvidia)

 Start from $2,199 !

The testing systems

GaAs:N (512 atoms)

2048 electrons

1283 FFT grid

40 Ryd Ecut

3.3 x105 PW coeff

CdSe quantum dot (933 atoms)

2832 electrons

2563 FFT grid

30 Ryd Ecut

1.1x106 PW coeff

stat = cublas_alloc(mg*mx, 16, cu_A) ! Alloc CUDA memory

 stat = cublas_alloc(mx*mx, 16, cu_SS)

 stat = cublas_alloc(mg*mx, 16, cu_B)

 call cublas_set_matrix (mg, mx, 16, A, mg, cu_A, mg) ! Copy matrix to GPU

 call cublas_set_matrix (mg, mx, 16, B, mg, cu_B, mg)

 call cublas_zgemm('c','n',mx,mx,ng_n,one,cu_A,mg, cu_B,mg, zero,cu_SS,mx) ! Cublas call

 call cublas_get_matrix (mx, mx, 16, cu_SS, mx, SS, mx) ! Get matrix to CPU

 call cublas_free(cu_A)

 call cublas_free(cu_B)

 call cublas_free(cu_SS) ! Free CUDA memory

GPU coding (easy to use CUBLAS)

CALL zgemm('c','n',mx, mx,ng_n,one,A,mg,B,mg, zero,SS, mx)

CPU code

GPU code

1.0x

2.8x

9.7x

Different steps of speeding up to go to GPU

0

100

200

300

400

500

600

700

800

900

CPU time CUBLAS FFT inside GPU

Computation Time for CG_AB (16 CPU/GPU units)

The results

Computing unit: one CPU core/ one GPU card

Times: in seconds

4 line min steps in CG_AB

Only the CG_AB times are reported

Computing units 16 32 64 128 256 256

systems 512-GaAs 512-GaAs 512-GaAs 512-GaAs 512-GaAs 933-CdSe

PEtot (CPU) 842 450 255 152 104 495

PEtot (GPU) 87 49 27 23 17 56

Speed-up (PEtot) 9.7x 9.2x 9.4x 7x 6.1x 8.8x

Total flops (Tflops) 0.59 1.05 1.91 2.24 3.03 5.92

Efficiency 7.1% 6.3% 5.7% 3.3% 2.3% 4.4%

The processor scalings

The total computational times for different kernels

exclusive

contributions

MPI_alltoall (transpose)

zheev

 The MPI_alltoall (for transpose) takes time

 For P=Hψ-εψ and H*P, reduce the double precision to 4 byte number,

 hence reduce the MPI_alltoall

The matrix diagonalization routines take time

 Using new CPU and GPU routines for diagonalizations

 The CPU-GPU wave function data copies take time

 Move all the computations to GPU, reduce CPU-GPU data copy

The remaining problems & solutions

The new program flow chart

*
*

*
*

0

100

200

300

400

500

600

700

800

900

CPU time CUBLAS FFT inside GPU AB-CG inside GPU MPI Data compression

Computation Time(CG_AB), 16 CPU/GPU units
1.0x

2.8x

9.7x
15.8x

20x

Different steps of speeding up to go to GPU

CONCLUSIONS

 It is possible to use GPU to speed up PW Pseudopotential

 DFT code by x20.

 Need to change the parallelization scheme, and introduce

 new algorithm.

 Hpsi and FFT are done within one GPU

 Want as many GPU per node as possible, CPU not used

 Want large GPU global memory (one whole wave

 function will be stored in one GPU)

 Want faster MPI_alltoall, MPI_allreduce

 Want faster GPU multi-processor lib

